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Abstract An effective method of modeling the presence of thin inclusions of arbitrary physical nature in bodies
is discussed. Using this method, the plane thermoelastic problem for two bounded dissimilar semi-planes with thin
heat-active interface inclusions is reduced to two separate systems of singular integral equations. The concept of
generalized stress-intensity factors is introduced and their dependence on the material characteristics and several
methods of thermal loading are analyzed.

Keywords Interaction conditions · Stress-intensity factor · Temperature-gradient intensity factor ·
Thermoelasticity · Thin inclusion

Nomenclature
PCCDD The principle of conjugation of continua with different dimensions
JF Jump functions
CPMF Constituents of physical and mechanical fields
IC Interaction conditions
SIE System of integral equations
SSIE System of singular integral equations
HII Heat-insulated inclusion
DI Diathermic inclusion
GTFIF Gradients of the temperature-field intensity factors
GSIF Generalized stress-intensity factors
fr Jump functions
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316 G. T. Sulim, J. Z. Piskozub

T Temperature
T,n ≡ ∂T /∂n,

qx, qy, qn Heat fluxes
σkj (ξ), uk (ξ) Stresses, displacements
L′

p = [a−
p ; a+

p ] Line, modeling the presence of a thin inclusion
2h (x) Inclusion width
δ Plate thickness
qB (x, y, z) Specific density of heat sources
E Young’s modulus
ν Poisson’s ratio
αT Coefficient of thermal expansion of the material
λk, λB Heat-conduction coefficients
αyk Coefficients of heat emission or values reverse to

coefficients of heat resistance
Nx(w),Nxy(w),
U(w), V (w) Stresses and displacements at the inclusion tips
Qx (w) Heat flux at the inclusion tips
M (w) Moments at the inclusion tips
εw

B Rigid turn of the inclusion
	T (z) Complex potential of the temperature field
	k (z), 
k (z) Complex Kolosov–Muskhelishvili potentials
k±

1 , k±
2 Gradients of the temperature-field intensity factors

K±
1,m, K±

2,m Generalized stress-intensity factors
〈ϕ〉h = ϕ (x,−h) + ϕ(x, h),

[ϕ]h = ϕ (x,−h) − ϕ(x, h)

[ϕ] = ϕ−
1 (x) − ϕ+

2 (x) ,

〈ϕ〉 = ϕ−
1 (x) + ϕ+

2 (x)

superscripts “+”, “−” Denotes the boundary values of the functions on the upper
and the lower inclusion borders with respect to width

a hat “ˆ" Marks the disturbed constituents of the fields
superscript “◦” Marks the CPMF in the corresponding problem without any inclusion
subscript “B” Denotes the terms CPMF inside the inclusion
superscript “b” Marks the biharmonic part of CPMF in the case of the generalized plane

temperature field.

1 Introduction

Thin inclusions, i.e., inclusions with one dimension smaller than the rest, are widespread as imperfections of mate-
rial structures and used as stiffening elements in constructions. Similar problems of thin inclusions arise when
investigating phase precipitation, when analyzing composite materials with layered and ribbonlike armature which
has more advantages in comparison with fibrous composites, when studying split filling with liquid or solid.

It has been noted [1,2] that for solving the problem of heat transfer and thermoelasticity for elastic bodies
with thin inclusions, it is possible to select five main approaches of analysis: general theoretic—to consider a thin
inclusion of arbitrary form, and then to decrease one of its sizes; numerical—to apply direct numerical methods;
experimental—to use experimental methods; asymptotical—to consider in detail the stresses and displacements
directly near the vicinity of heterogeneities and interface of materials by asymptotic methods; new theories of
imperfect contact—to develop a specific theory that will enable to solve the proper problems rather than simply
taking into account the effect of a defect’s small thickness.

The idea of the last of these, which is one of the most productive approaches, is based on the principle of conju-
gation of continua with different dimensions [3–20]. An object is eliminated from consideration and its influence
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Thermoelastic equilibrium of piecewise homogeneous solids 317

results in the appearance of jumps in the temperature, heat fluxes, displacement vectors and stresses in the matrix.
Then stresses and other characteristics in an arbitrary point of the solid are determined by the problem geometry,
material properties, external loading and jump functions. The mathematical model of an inclusion is given as the
interaction conditions that are equivalent to the conditions of imperfect contact between the matrix surfaces adjacent
to the inclusion.

2 Jump-function method

The idea behind the jump-function method is based on the application of two principal propositions: the principle of
conjugation of continua with different dimensions (PCCDD) and existing interaction conditions (IC) between thin
inclusions and their surroundings. The essence of the PCCDD lies in the substitution of a thin inclusion of volume
V (area in the two-dimensional case) by some surface S (curve L in two-dimensional problems) of temperature,
stress and displacement discontinuities in the surrounding media. An inclusion as a geometrical object is eliminated
from consideration, and its influence results in the appearance in a matrix of jump functions (JF), fr , of some
physical and mechanical fields (temperature T , heat fluxes T,n ≡ ∂T /∂n, components of the displacement vector
u = (u1, u2, u3), stress vector tn = (tn1, tn2 , tn3)) and the like, while passing across the surface S (curve L) [20].
The JF are functions of the surface S (curveL) co-ordinates.

The selection of the amount of physical and mechanical content of the JF taken into consideration must represent
those effects which are generated by the presence of the examined type of thin heterogeneities in the considered
class of environment and to provide a simple and synonymous determination of all constituents of physical and
mechanical fields (CPMF) taken into consideration in an arbitrary point ξ of the medium beyond the region filled by
inclusions. Thus, not only the JF but also the external loading, the geometry of problem and the material properties
must be taken into account.

If some external loading acts in a matrix there, it is necessary to supply corresponding terms with the homo-
geneous solution σ 0

kj (ξ), u0
k(ξ), T 0(ξ), i.e., the expressions describing given parameters under the given load and

without inclusions (jump surfaces), in the equations for stress, strain and displacements. Thus the solution can be
given as the superposition

σkj (ξ) = σ̂kj (ξ, fr) + σ 0
kj (ξ), uk(ξ) = ûk(ξ, fr) + u0

k(ξ),

T (ξ) = T̂ (ξ, fr) + T 0(ξ),
(2.1)

where a hat marks the disturbed constituents of the fields, obtained only as a result of JF influence, and the superscript
“◦” marks the CPMF in the corresponding problem without any inclusions (homogeneous solution).

In some problems (opening with wedge, distribution of dislocations, forces, heat sources in surfaces etc.) all
or part of the JF are known. However, in most cases the JF are unknown. Then, for the determination of origi-
nally unknown JF, one uses interaction conditions (IC) which reflect the dependence Fj

(
T ±

B , T ±
B,n, t±nB, u±

B

)= 0

between the temperature T ±
B , the heat flux T ±

B,n through the interface, the displacements u±
B and the stress vectors

t±nB inside the thin inclusion, where superscripts “+” and “−” denote boundary values of these functions on the
upper and the lower inclusion borders, respectively. These equations constitute the mathematical inclusion model.

In thermoelasticity the number of these equations must correspond to the number of unknown JF (in the most
general three-dimensional form there should be eight of these, namely three for jumps in the stresses, three for
jumps in the displacements and two for jumps in the temperature and heat flux).

Using boundary conditions on the interface (perfect or imperfect) and transferring the value of CPMF from
matrix-inclusion interface to jump surface S (curveL), one can define the mathematical inclusion model on the
inclusion-matrix interface:


j

(
T ±, T ±

,n , t±n , u±) = 0, t±nk = σ±
kj nj . (2.2)

The interaction conditions (2.2) are, per se, conditions of imperfect contact between the opposite matrix surfaces
adjacent to the inclusion.
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318 G. T. Sulim, J. Z. Piskozub

If one defines boundary values of the CPMF on the interface from (2.1) and substitutes them in the IC (2.2),
a system of integral equations (SIE) for the determination of the jump functions 	j (fr) = 0 is obtained. On the
basis of PCCDD (2.1) the solution of this system determines the CPMF in an arbitrary point of the matrix. The
application of the mathematical inclusion model (2.2) allows determining the CPMF inside the inclusion.

It should be noted that PCCDD and IC can be examined independently. PCCDD (as an external problem) can
be applied without taking into consideration the mechanical properties of an inclusion and is determined exclu-
sively by matrix properties: if the expressions (2.1) are created by the given type of matrix, such a dependence
can be applicable for arbitrary IC as in (2.2), developed for cracks, rigid layers or for various models of elastic,
elastic–plastic, thin liquid inclusions.

On the other hand, the matrix type is not important for the creation of IC (internal problem): it is no more than
some abstract continuum. Requirements for an IC are: (1) the number of IC must be equal to the number of JF; (2)
they must be simple enough to solve the obtained SIE; (3) they must be sufficiently adequate to reflect the essential
characteristics of inclusion behavior.

3 Method of thin elastic heat-active inclusion design

The thin-object method, as presented by the authors, is based on the idea of integration with respect to volume (size)
for determining expressions that describe the physical and mechanical state of inclusion material, taking account
of the smallness of one of the linear sizes of the inclusion.

Let us consider an inclusion of small width 2h (x), symmetric with respect to the middle line and situated along
L′

p = [a−
p ; a+

p ] (Fig. 1) on the interface of two half-planes of thickness 2δ (for plane temperature field and plane
deformation δ → ∞).

The thermoelastic equilibrium of an elementary volume, abstracted from the elastic isotropic inclusion, is
described by the equations of heat balance and elastic equilibrium, for the displacements ux, uy , stresses σxx ,
σyy , σxy and temperature TB :

∂qx

∂x
+ ∂qy

∂y
+ qn

δ
+ qB (x, y, z)

2δ
= 0, (3.1)

∂σxx

∂x
+ ∂σxy

∂y
= 0,

∂σxy

∂x
+ ∂σyy

∂y
= 0, (3.2)

εxx = ∂ux

∂x
= σxx − ν∗σyy

E∗
+ αT ∗TB, εyy = ∂uy

∂y
= σyy − ν∗σxx

E∗
+ αT ∗TB,

(3.3)
γxy ≡ 2εxy = 2 (1 + ν∗) σxy

E∗
, γxy ≡ 2εxy = ∂ux

∂y
+ ∂uy

∂x
,

where qx, qy, qn are the heat fluxes in the directions x, y, n; n is the external normal to the lateral surfaces of the
inclusion; qB (x, y, z) denotes the specific density of heat sources; E∗ = E/

(
1 − ν2
)
, ν∗ = ν/(1 − ν), αT ∗ =

Fig. 1 Bonded half-planes
with interface inclusions
under different loading
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Thermoelastic equilibrium of piecewise homogeneous solids 319

(1 + ν) αT for plane deformation; E∗ = E, ν∗ = ν, αT ∗ = αT for generalized plane stress; E, ν, αT are Young’s
modulus, the Poisson’s ratio and the coefficient of thermal expansion of the material, respectively.

In this case the single equation of displacements compatibility looks like:



(
σxx + σyy

)+ αT ∗E∗
TB = 0. (3.4)

Let the heat transfer on lateral surfaces (z = ±δ) satisfy the generalized law qn = F (TB, TC, α, β, . . .), where
TB, TC, α, β, . . . denote the temperature of the inclusion, the temperature and the physical parameters of the sur-
roundings, respectively. Then one can speak about a generalized plane temperature field, and taking into account
the Fourier law, we have:

λB
TB (x, y) − F (TB, TC, α, β, . . .)/δ − QB (x, y) = 0,

{TB (x, y),QB (x, y)} = 1

2δ

∫ δ

−δ

{TB (x, y, z) , qB (x, y, z)}dz. (3.5)

Here TB,QB denote the temperature and density of internal heat sources averaged with respect to thickness.
In particular, for heat transfer according to Newton’s law f (TB, TC, αB) = αB (TB − TC) at z = ±δ and Eq. (3.5)

becomes [12]

λB
T (x, y) − αB

δ
[T (x, y) − TC] = −QB (x, y)

2δ
. (3.6)

For a plane temperature field (δ → ∞) TB (x, y, z) = TB (x, y) and the equation of heat conduction (3.6)
becomes harmonic.

Integrating (3.1), (3.2) with respect to the width y and to x in the domain
[
a−
p ; x
]
, we obtain:

λB

∫ h

−h

∂TB (x, y)

∂x
dy − Qx

(
a−
p

)
− λB

∫ x

a−
p

[
∂TB

∂y

]

h

dξ − 2h

δ

∫ x

a−
p

FC (ξ)dξ + 2h

∫ x

a−
p

QC
B (ξ)dξ = 0, (3.7)

∫ h

−h

σxxB (x, y) dy −
∫ h

−h

σxxB

(
a−
p , y
)

dy −
∫ x

a−
p

[
σxyB
]
h
dξ = 0, (3.8)

∫ h

−h

σxyB (x, y) dy −
∫ h

−h

σxyB

(
a−
p , y
)

dy −
∫ x

a−
p

[
σyyB
]
h
dξ = 0, (3.9)

where Qx (w) = ∫ h(w)

−h(w)
λB

∂TB(w,y)
∂x

dy, (w = {a−
p , a+

p }), are the heat fluxes at the tips of the inclusion; also

ϕC (x) = 1

2h

∫ h

−h

ϕ (x, y) dy, 〈ϕ〉h = ϕ (x,−h) + ϕ (x, h) , [ϕ]h = ϕ (x,−h) − ϕ (x, h) .

Using the expansion of functions into Taylor series with respect to y near the points (x,±h) and keeping terms
of order not higher than h2 in the equations, we get a system of mathematical model equations for a thin elastic
heat-conductive inclusion in the case of a plane problem:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− νB

EB

∫ x

a−
p

[
σxyB

]

h
dξ +
∫ x

a−
p

[
∂uyB
∂x

]

h

dξ + h

EB

〈
σyyB

〉

h
+ αT Bh 〈TB〉h

− h2

EB

∂

∂x

[
σxyB
]
h

+ αT Bh2

λB

[
λB

∂TB

∂y

]

h

− νB

EB
Nx

(
a−
p

)
+ V
(
a−
p

)
= 0,

− 1

EB

∫ x

a−
p

[
σxyB
]
h

dξ + h

〈
∂uxB
∂x

〉

h

+ νB

EB
h
〈
σyyB

〉

h
− αT Bh 〈TB〉h

−h2 ∂
∂x

[
∂u

yB
∂x

]

h

+ 2+νB
EB

h2 ∂
∂x

[
σxyB

]

h
− α

T Bh2

λB

[
λB

∂TB
∂y

]

h
− 1

EB
Nx

(
a−
p

)
= 0,

−
∫ x

a−
p

[
∂uxB

∂x

]

h

dξ + 1

νBEB

∫ x

a−
p

[
σyyB

]

h
dξ − νB

EB
h
〈
σxyB

〉

h

+1 + νB

νB
αT B

∫ x

a−
p

[TB]hdξ + νB

EB
Nxy

(
a−
p

)
− 1

νB

∫ x

a−
p

[
∂uyB
∂y

]

h

dξ

+ h2

EB

∂

∂x

[
σyyB

]

h
+ αT Bh2 ∂

∂x
[TB]h − h2 ∂

∂x

[
∂uyB
∂y

]

h

= 0,

−
∫ x

a−
p

[
∂uxB

∂x

]

h

dξ − 1

GB

∫ x

a−
p

[
σyyB

]

h
dξ + h

〈
∂uyB
∂x

〉

h

+ h2 ∂

∂x

[
∂uyB

∂y

]

h

= V ′ (a−
p

) (
x ∈ L′

p

)
,

(3.10)

where
{
Nx(w),Nxy(w),U ′(w), V ′(w)

}
are the stresses and displacements at the inclusion tips. Further

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

λB [TB]h + h

〈
λB

∂TB

∂y

〉

h

+ h2

2

{
−λB

∂2

∂x2 [TB]h + [F ]h/δ + [QB]h

}
= 0,

λBh

〈
∂TB

∂x

〉

h

+ h2 ∂

∂x

[
λB

∂TB

∂y

]

h

−
∫ x

a−
p

[
λB

∂TB

∂y

]

h

dξ−2h

δ

∫ x

a−
p

FC (ξ) dξ

+2h

∫ x

a−
p

QC
B (ξ) dξ − Qx

(
a−
p

)
= 0.

(3.11)

If we keep terms of order not higher than h in (3.10)–(3.11), then this version of the equations will differ from
the equations of the “intermediate layer” model [9,11] only by coefficients and terms that take into account the heat
activity of the inclusion. It is possible to take into account also terms of order h3 etc and obtain more exact, but
substantially more difficult models for the inclusion.

Let us suppose now that the thermal contact between inclusion and matrix along the whole thickness is imperfect
(x ∈ L′

p):

λB
∂TB (x, y)

∂y
± αyk {TB (x,±h) − T (x,±h)} = 0; λB

∂TB (x, y)

∂y
= λk

∂T (x,±h)

∂y
, (3.12)

where T (x, y) is the temperature of the matrix; λk (k = 1, 2) are the coefficients of heat conduction of the matrix
materials; αyk are heat-transfer coefficients (for fluid or gas inclusion) or values opposite to coefficients of heat
resistance (for inclusion of crystalloid structure). For αyk = 0 in (3.12), we obtain the partial case of a heat-insulated
inclusion (crack). For αyk → ∞ the conditions (3.12) describe perfect thermal contact.

The mechanical contact between inclusion and matrix will be considered as perfect:

σyyB (x,±h) = σyyk (x,±h) , σxyB (x,±h) = σxyk (x,±h) ,

u′
xB (x,±h) = u′

xk (x,±h) , u′
yB (x,±h) = u′

yk (x,±h) + εB, k =
{

2
1

} (
x ∈ L′

p

)
,

(3.13)

where σyyk , σxyk , uxk , uyk (k = 1, 2) denote the stresses and displacements in the matrix at the upper (k = 2) and
lower (k = 1) bounds of contact, respectively; εB is the fixed rotation of the inclusion.

Taking into account the thinness of the inclusion, we may use:
∂uyB (x, h)

∂y
= ∂uyB (x,−h)

∂y
or

[
∂uyB

∂y

]

h

= 0. (3.14)
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Thermoelastic equilibrium of piecewise homogeneous solids 321

The use of the boundary conditions (3.12)–(3.13), while taking into account (3.14) in (3.10), (3.11) of the
mathematical model of the inclusion, generates the thermomechanical interaction conditions of a thin elastic
heat-active inclusion-layer with matrix:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− νB

EB

∫ x

a−
p

[
σ̂xy

]
dξ +
∫ x

a−
p

[
u′

y

]
dξ + h

EB

〈
σ̂yy

〉− h2

EB

∂

∂x

[
σ̂xy

] = F1(x),

− 1

EB

∫ x

a−
p

[
σ̂xy

]
dξ + h

〈
û′

x

〉
+ νB

EB
h
〈
σ̂yy

〉+ 2 + νB

EB
h2 ∂

∂x

[
σ̂xy

]− h2 ∂

∂x

[
û′

y

]
= F2(x),

−
∫ x

a−
p

[
û′

x

]
dξ + 1

νBEB

∫ x

a−
p

[
σ̂yy

]
dξ − νB

EB
h
〈
σ̂xy

〉+ h2

EB

∂

∂x

[
σ̂yy

] = F3(x),

−
∫ x

a−
p

[
û′

x

]
dξ − 1

GB

∫ x

a−
p

[
σ̂yy

]
dξ + h

〈
û′

y

〉
= F4(x),

(3.15)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λB

h

(
1 − h2

2

∂2

∂x2

){[
t̂
]+
〈

λ

αy

∂t̂

∂y

〉}
+
〈
λ

∂t̂

∂y

〉
+ h

2δ
[F ] = F5(x), (x ∈ L′

p),

λBh
∂

∂x

{〈
t̂
〉+
[

λ

αy

∂t̂

∂y

]}
+ h2 ∂

∂x

[
λ

∂t̂

∂y

]
−
∫ x

a

[
λ

∂t̂

∂y

]
dξ − 2h

δ

∫ x

a−
p

FC (ξ) dξ = F6(x),

where Fm (x) (m = 1, 2, 3, 4) are given in Appendix 1.
Substituting x = a+

p in (3.15), we obtain the integral conditions describing the heat balance and elastic equilib-
rium in the inclusion region:
∫

L′
p

[
λ

∂T

∂y

]

h

dξ =Qx

(
a+
p

)
− Qx

(
a−
p

)
− 2h

δ

∫

L′
p

f C (ξ) dξ + 2h

∫

L′
p

QC
B (ξ) dξ, (3.16)

∫ a+
p

a−
p

[
σyy

]
h
dξ = Nxy

(
a+
p

)
− Nxy

(
a−
p

)
,

∫ a+
p

a−
p

[
σxy

]
h
dξ = Nx

(
a+
p

)
− Nx

(
a−
p

)
. (3.17)

The conditions of insolubility of the temperature field and uniqueness of the displacement field are also necessary
while going round each inclusion:

∫

L′
p

[
∂T

∂y

]

h

dξ =0,

∫ a+
p

a−
p

[
u′

x

]
h
dξ = U

(
a+
p

)
− U
(
a−
p

)
,

∫ a+
p

a−
p

[
u′

y

]

h
dξ = V

(
a+
p

)
− V
(
a−
p

)
. (3.18)

It is necessary to add the condition of equality to zero of the main moment of the forces applied to the inclusion
for the determination of an additional rigid turn of the inclusion εw

B to the IC (3.15):

−
∫ a+

p

a−
p

{
x
[
σyyB
]
h

+ h
〈
σxyB
〉
h

}
dξ = M

(
a+
p

)
− M
(
a−
p

)
. (3.19)

It is possible to construct simpler variants, considering the inclusion of thermally and mechanically orthotropic,
heat-insulated, diathermic, absolutely pliable (crack), perfectly rigid and other materials on the basis of the obtained
interaction conditions (3.15).

The thermomechanical interaction conditions of a thin elastic heat-active inclusion layer with matrix (3.15)
are given for the whole range of mechanical properties of inclusion materials. They are generalizations of IC
[5,6,10,21,22] and equivalent to the most general equations for an “intermediate layer” [9,11] and a “thin elastic
layer” [3, Chap. 1, Sect. 4] . The advantage of the method of IC creation presented here is that it gives the possibility
of a mechanical interpretation of each term in the construction of the model.
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4 Method of CPMF in a piecewise homogeneous solid with inclusions

The thermomechanical equilibrium of a piecewise-homogeneous medium consisting of two dissimilar half-planes
Sk (k = 1, 2) with the mechanical and physical parameters E∗k, ν∗k, αT ∗k, λk is considered (Fig. 1). On the interface
of the materials L = L′ ∪L′′ (coincides with the x-axis of a system of Cartesian co-ordinates) along L′ = ∪N

p=1 L′
p,

L′
p = [a−

p ; a+
p ], N thin heat-active inclusions with parameters EB, νB, αB, λB are situated. The medium is loaded

by heat fluxes, q∞
xk , q

∞
y , and homogeneous tensions σ∞

yy = p, σ∞
xxk = pk , σ∞

xy = τ acting at infinity; heat sources
qk , heat doublets qkk , forces Pk and moments Mk situated at points z∗k of the matrix. A perfect or imperfect thermal
contact between matrix and inclusions is assumed, perfect—between half-planes; heat Q =∑N

p=1 Qp is generated
from the region of the inclusion; Qp = 2h

∫
L′

p
Qc

0 (ξ)dξ is the flow of heat from the pth inclusion. The mechanical

contact between the components of the system is assumed to be perfect.
Let us assume that the power factors do not disturb the temperature fields (coupled displacements and tem-

perature processes are not taken into consideration). Thus, the problem of heat conductivity is first to examine
the temperature-field disturbance by a thin inclusion and other temperature factors (by heat fluxes, sources and
doublets). After this the temperature field can be considered as an external loading (by the homogeneous solution
(σ 0

kj , u0
j (k, j → x, y)) in the thermoelasticity problem.

4.1 Problem of heat conductivity (plane temperature field)

Let us consider perfect thermal contact between half-planes

[T ]L′′ = 0, [λ∂T /∂y]L′′ = 0,
[
t0
]

L
= 0,
[
λ∂t0/∂y

]

L
= 0
(
[f ]L ≡ f −(x) − f +(x), x ∈ L

)
. (4.1)

Hence JFM with respect to heat-conduction problems suggests the simulation of the thin inclusion by a distribution
of heat sources and doublets (jumps of temperature and heat flux) in its middle surface
[

∂t̂

∂x

]

L

= f5 (x),

[
λ

∂t̂

∂y

]
= f6 (x),

(
x ∈ L′),

fr (x) = 0 (r = 5, 6),
(
x ∈ L′′).

(4.2)

When heat transfer from the lateral surfaces is absent, the temperature field is a harmonic function and it can be
given as the real part of an analytic function, the complex potential of the temperature field:

T (z) = Re	T (z); (4.3)

∂T (z)

∂x
= ReI (z),

∂T (z)

∂y
= −ImI (z) , 	′

T (z) = �(z). (4.4)

According to (2.2) and (4.4), we have [10]:

� (z) = �0 (z) + �̂ (z), 	T (z) = 	0
T (z) + 	̂T (z), (4.5)

	0
T (z) = − 1

2π

{
2πq∞

λk

z + Dk1 (z) + (pk − pj

) {
Dk1 (z) + Dk2 (z)

}

+Dk2 (z) + 2pj

{
Dj1 (z) + Dj2 (z)

}+ 	∞
T

}
, Dk1 (z) = qk

λk

log (z − z∗k),

Dk2 (z) = −qkk

λk

exp (iθk)

z − z∗k

, pk = pλk, p = 1

λ1 + λ2
, c = pkλj = λ1λ2

λ1 + λ2
,

	∞
T = const (z ∈ Sk; k = 1, 2; j = 3 − k). (4.6)
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From (4.1) for |x| → ∞ we have an additional relation between the heat fluxes acting at infinity: λ2q
∞
x1 = λ1q

∞
x2.

Using (4.3)–(4.6), from (4.2) it is easy to derive two Riemann–Hilbert problems [23, Chap. 6], the solution of which
looks like

�̂ (z) = −2pjH5 (z) + 2ipH6 (z) (z ∈ Sk; k = 1, 2; j = 3 − k), (4.7)

	̂T (x) = 2pj H̃5 (z) − 2ipH̃6 (z) (z ∈ Sk; k = 1, 2; j = 3 − k). (4.8)

Here
{
Hr (z), H̃r (z)

}
= 1

2πi

∫

L′

{
1

ξ − z
, log (ξ − z)

}
fr (ξ) dξ, (z ∈ Sk),

f̃r (x) =
∫

fr (t)dt,
{
Hr (x), H̃r (x)

}
= 1

π

∫

L′

{
1

ξ − x
, log |ξ − x|

}
fr (ξ) dξ,

(
x ∈ L′).

(4.9)

Thus, as a result of (4.3)–(4.9), the distribution of the temperature field in an arbitrary point of the matrix by means
of the unknown JF fr (r = 5, 6) is found.

For vanishing and uniqueness at infinity of the temperature field, an additional condition is necessary
∫

L′
f6 (ξ) dξ +

2∑

k=1

qk = 0, (4.10)

which follows from (4.6) and (4.8). Comparison of (4.10) with the condition of heat balance in the region of each
inclusion (3.16) indicates that, for vanishing and uniqueness of the temperature field at infinity, an implementation
of a heat-balance condition in the medium is necessary: Q +∑2

k=1 qk = 0.
We use (4.3), (4.8), using (4.1), (4.2) and the Sokhotski–Plemelj formulas [23, Chap. 6], to obtain the boundary

values of the disturbed part of the temperature and its derivatives on the interface. Their substitution in IC (3.15)
leads to a system of singular integral equations (SSIE) for the determination of JF fr (r = 5, 6):
{

ρ51H5 (x) + ρ52s5n (x) + ρ55f6 (x) = F5 (x),
(
x ∈ L′

n; n = 1, N
)

ρ61H6 (x) + ρ62H
′
5 (x) + ρ63s6n (x) + ρ64f5 (x) + ρ65f

′
6 (x) = F6 (x),

(4.11)

where

ρ51 = −2c
(
h + λBα+

y

)
, ρ55 = λBα−

y − (p2 − p1)
(
h + λBα+

y

)
,

ρ52 = λB, ρ61 = 2λBph, ρ62 = −2cλBα−
y h, ρ63 = −1, ρ64 = λB (p2 − p1) h,

ρ65 = λBh
(
α+

y − (p2 − p1) α−
y

)
, srn (x) =

∫ x

a−
n

fr (ξ)dξ, α±
y = αy2 ± αy1

2αy1αy2
,

where αy1, αy2 are heat-transfer coefficients between matrix and inclusion or terms opposite to the coefficients of
heat resistance; the functions F5 (x), F6 (x) are shown in Appendix 1.

The functions fr (x) satisfy the additional conditions∫

L′
n

fr (ξ)dξ = Qr
n

(
n = 1, N; r = 5, 6

)
, Q5

n = 0,Q6
n = Q̂x

(
a+
n

)− Q̂x

(
a−
n

)+ Qn.

The first among these (for r = 5) determines the continuity of the temperature field; the second (r = 6) follows
from the heat balance.

The following partial cases of the SSIE (4.11) deserve special attention:

4.1.1 Perfect thermal contact of inclusion with matrix

Passing to the limit αyk → ∞ (k = 1, 2) in (4.11), we obtain equations that describe the case of perfect thermal
contact between matrix and inclusions on the interface of the half-planes
{

ρ51H5 (x) + ρ52s5n (x) + ρ55f6 (x) = F5 (x),

ρ61H6 (x) + ρ63s6n (x) + ρ64f5 (x) = F6 (x)
(
x ∈ L′

n; n = 1, N
)
,

(4.12)

where now

ρ51 = −2ch, ρ52 = λB, ρ55 = − (p2 − p1) h, ρ61 = 2λBph, ρ63 = −1, ρ64 = λB (p2 − p1) h.
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4.1.2 Homogeneous matrix

When λ1 = λ2 = λ, αy1 = αy2 = αy , we obtain a separated system of equations for an inclusion in a homogeneous
matrix from (4.11):

−λ
(
h + λB/αy

)
H5 (x) + λBs5n (x) = F5 (x),

(λBh/λ)H6 (x) + (λBh/αy

)
f ′

6 (x) − s6n = F6 (x)
(
x ∈ L′

n; n = 1, N
)
.

4.1.3 Heat-insulated inclusion (HII)

This case is obtained from (4.11) either by setting αy1 = αy2 = 0 or by setting λB = 0. As a result, we have an
expression for f6 (x) and a singular integral equation:

f6 (x) = −
[
λ

∂t0

∂y

]

h

, H5 (x) + λ2 − λ1

2λ1λ2
f6 (x) = λ2 + λ1

2λ1λ2

〈
λ

∂t0

∂y

〉

h

(
x ∈ L′

n; n = 1, N
)

which can be solved analytically [24, Chap. 4, Sect. 3, Chap. 6].

4.1.4 Diathermic inclusion (DI)

Considering αy1 = αy2 = αy and passing to the limit λB → ∞ in (4.11), we will get

H̃5 (x) + 1

αy

f6 (x) = −
[
t0
]

h
− 1

αy

[
λ

∂t0

∂y

]

h

,
(
x ∈ L′

n; n = 1, N
)

2pH6 (x) + (p2 − p1) f5 (x) + c

αy

∂

∂x
{2H5 (x) − (p2 − p1) f6 (x)} = − ∂

∂x

{〈
t0
〉

h
+ 1

αy

〈
λ

∂t0

∂y

〉

h

}
.

These expressions may be presented as conditions of imperfect contact of half-planes along L′:

[T ]h + 1

αy

[
λ

∂T

∂y

]

h

= 0,
∂

∂x

{
〈T 〉h + 1

αy

〈
λ

∂T

∂y

〉

h

}
= 0.

A similar problem was studied in [25, Chap. 2].

4.1.5 Physically equivalent materials

Considering λ1 = λ2 = λB = λ in (4.11), we have F5 (x) = F6 (x) = 0. Consequently, the disturbed field is absent
(the JF is equal to zero) in the uniqueness result of the solution.

For a more detailed analysis let us consider the case of perfect thermal contact of a single inclusion with the
matrix. A study of the characteristic part of SSIE (4.12) proves that JF can be given as:

f m
5 (x) = q

a
√

λ1λ2
(ϕ1(x) + ϕ2(x)), f m

6 (x) = q

a
(ϕ1(x) − ϕ2(x)),

ϕk (x) = (a+
m − x
)−1/2 ± η (

x − a−
m

)−1/2∓η
ϕ∗

k (x), k =
{

1
2

}
,

(4.13)

where 2a = a+
m − a−

m , ϕ∗
k (x) are dimensionless regular functions; q denotes the intensity of the thermal loading of

the medium; the term η is determined by the characteristic part of the SSIE (4.12) [24, Chap. 6, Sect. 3] and equals
η = arctan

(
0.5 (λ2 − λ1)/

√
λ2λ1
)
.

By introduction of a polar co-ordinate system (r, θ) with the origin near the right or the left tip of the inclu-
sion z = ±r · exp(iθ) ± a±

m (Fig. 1), it is possible to obtain two-term asymptotic expressions for the distribution
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of the temperature gradients in the vicinity of the tips (|z1| << 2a) with (2.1), (4.7)–(4.9), (4.13) taken into
account:
⎧
⎪⎪⎨

⎪⎪⎩

∂

∂x

(
T − T 0

)

∂

∂y

(
T − T 0

)

⎫
⎪⎪⎬

⎪⎪⎭
= 1

2
√

aπλ1λ2

[( r

2a

)− 1
2 ±η

k±
1 M∓ (−1) +

( r

2a

)− 1
2 ∓η

k±
2 M± (1)

]

+pq

a

⎧
⎪⎨

⎪⎩

N±
6

− λj√
λ1λ2

N±
3

⎫
⎪⎬

⎪⎭
+ O
(
r1/2∓η
)
, M∓ (r) =

⎧
⎪⎪⎨

⎪⎪⎩

− λj√
λ1λ2

sin θ∓ + r cos θ∓

r sin θ∓ + λj√
λ1λ2

cos θ∓

⎫
⎪⎪⎬

⎪⎪⎭
,

θ∓ = θ

2
∓ ηθ, z ∈ Sk (k = 1, 2; j = 3 − k),

N±
r = lim

x→a±
m∓0

[
Hm

r (x) + tanπη f m
11−r (x)

] = 1

2 cos πη

∞∑

n=1

(±1)n �
(
n + 1

2 ∓ η
)

(n − 1)!� ( 32 ∓ η
) Ar

n (r = 5, 6); (4.14)

Ar
n =
{

A1
n − A2

n (r = 6),

A1
n + A2

n (r = 5),
if ϕ∗

m(x) =
∞∑

n=0

Am
n P

−1/2±η,−1/2∓η
n (x);

where k±
1 , k±

2 denote gradients of the temperature-field intensity factors (GTFIF), which are defined by the corre-
lations

lim
r→0,
θ=0

2
√

πaλ1λ2

{
∂T

∂x

(
a±
m

)− i
∂T

∂y

(
a±
m

)} =
( r

2a

)− 1
2 ±η

Lj (−1)k±
1 +
( r

2a

)− 1
2 ∓η

Lj (1)k±
2 ,

k±
m = q

√
πλ1λ2

(λ1 + λ2)
√

a cos πη
ϕ∗

m (±1), Lj (r) =
(

r − i
λj√
λ1λ2

)
, z ∈ Sk(k = 1, 2; j = 3 − k).

The coefficients N±
r describe the second terms and, as it appears, they are determined only by the homogeneous

solution in the limiting cases of HII and DI.
In partial cases of physical equivalence of matrix materials, either DI or HII, the characteristic parameter η = 0

and the asymptotic expressions can be simplified:

lim
r→0,
θ=0

2λ
√

πa

{
∂T

∂x

(
a±
m

)− i
∂T

∂y

(
a±
m

)} =
( r

2a

)− 1
2
(
k±
x − ik±

y

)
,

(
k±
x = k±

2 − k±
1 ,

k±
y = k±

2 + k±
1

)

.

⎧
⎪⎪⎨

⎪⎪⎩

∂

∂x

(
T − T 0

)

∂

∂y

(
T − T 0

)

⎫
⎪⎪⎬

⎪⎪⎭
= k±

x

λ
√

2πr

⎧
⎪⎨

⎪⎩

cos
θ

2

sin
θ

2

⎫
⎪⎬

⎪⎭
+ k±

y

λ
√

2πr

⎧
⎪⎨

⎪⎩

− sin
θ

2

cos
θ

2

⎫
⎪⎬

⎪⎭
− q

4aλ

{
n±

6

−n±
5

}

+ O
(√

r
)
,

λ (T − T0) = ±√2r/π

(
k±
y sin

θ

2
+ k±

x cos
θ

2

)
+ [n±

6 (a + r cos θ) − n±
5 r sin θ

]+ O
(
r3/2
)
.

In particular, for a loading with heat sources of strength q2 = −q1 = q in the points z2 = z̄1 = iy∗ :

k±
x = 0, k±

y = − q√
πa

[
1 + (y∗/a)2

]−1/2
for HII, (4.15)

k±
x = 0, k±

y = 0 for DI. (4.16)

It is remarkable that GTFIF under such loading do not depend on the physical characteristics.
Using (4.15), (4.16) we easily obtain GTFIF for a semi-infinite interface defect by introducing a local system of

co-ordinates ξ = z − a starting near the right tip of the inclusion and passing to the limit a → ∞.
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4.2 Thermoelasticity problem in the case of a plane temperature field

Vectors of stresses and displacements from the homogeneous state are continuous on the interface L:

(
σ 0

yy1 − iσ 0
xy1

)
−
(
σ 0

yy2 − iσ 0
xy2

)
= 0,
(
u0

x1
′ + iu0

y1
′)−
(
u0

x2
′ + iu0

y2
′) = 0 (x ∈ L). (4.17)

For a disturbed state four JF are introduced similar to (4.2):

(
σ̂yy1 − iσ̂xy1

)− (σ̂yy2 − iσ̂xy2
) = f1 (x) − if2 (x) = f ∗

1 (x),

(
û′

x1 + iû′
y1

)
−
(
û′

x2 + iû′
y2

)
= f3 (x) + if4 (x) = f ∗

3 (x) (x ∈ L),

(4.18)

whence fr (x) = 0 (r = 1, 2, 3, 4) when x ∈ L′′.
The stresses and displacements in each of the considered half-planes Sk can be written in terms of complex

Kolosov–Muskhelishvili potentials 	k (z), 
k (z). According to (2.1) let us represent CPMF as the sum of homo-
geneous, 	0

k (z), and disturbed, 	̂k (z), solutions, assuming that the temperature field is now an external loading.
Using analytic continuation [23, Chap. 6], it is possible to express the homogeneous solution as follows:

σ 0
yyk (z) − iσ 0

xyk (z) = 	0
k (z) − 	0

k (z̄) + (z − z̄) 	0′
k (z),

2Gk

[
u0

xk

′
(z) + iu0

yk

′
(z)
]

= κk	
0
k (z) + 	0

k (z̄) − (z − z̄) 	0
k

′
(z)

+βT k	T (z), κk = 3 − νk∗

1 + νk∗
, βT k = 2αT ∗kGk (z ∈ Sk; k = 1, 2), (4.19)

where the potential 	T (z) is determined by (4.5), (4.6), (4.8).
The potential of the homogeneous field, 	0

k (z), may be represented in the form [19; 23, Chap. 6]:

	0
k (z) = �k + S11 (z) + S22 (z) + βT kφk [Dk1 (z) + Dk2 (z)] + εkjDj1 (z) + 	0

0k (z),

	0
j (z) = −�̄j − �̄′

j − Sjj (z) − Rjj (z) − Rj (z) − zS′
11 (z) − βTjφj

4∑

m=1

D̄jm (z)

−εjk

[
D̄k1 (z) + zD̄′

k1 (z)
]− βTjφj

[
zD̄′

j1 (z) + zD̄′
j2 (z)
]

+ 	0
0j (z), (z ∈ Sk; j = 3 − k);

Dk3 (z) = −qk

λk

z̄∗k

z − z∗k

, Dk4 (z) = −qkk

λk

[
exp (−iθk)

z − z∗k

+ z̄∗k exp (iθk)

(z − z∗k)
2

]
,

�k = p + pk

4
, �′

k = p − pk

2
+ iτ, Skj (z) = − φkPj

z − z∗j

, Rj (z) = −iMj

2π
(
z − z∗j

)2 ,

Rkj (z) = φk

[
κkPj

z − z∗j

− zPj
(
z − z∗j

)2

]

, φk = 1

2π (1 + κk)
, εkj = −βT kφk

qkλj

qjλk

.

(4.20)

Here the functions 	0
0m (z) vanish at infinity and are holomorphic in Sk (k,m = 1, 2). The constant εkj is deter-

mined from the condition of uniqueness of stresses and displacements at infinity. Implementation of condition (4.10)
of the general heat balance in the medium is thus required.
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Application of the method used in [23, Chap. 6] gives

	0
0k (z) = mk

kSjj (z) +
(
m

j
k − 1
) [

Skk (z) + Rkk (z) + Rk (z) + zS′
kk (z)
]

+
(
m

j
k − 1
)

βT kφk

[
D̄k3 (z) + zD̄′

k1 (z) − qk

λk

]
+
(

2βT kφkm
j
kpj − εkj

)
Dj1 (z)

+βT kφk

(
2m

j
kpk − 1

)
D̄k1 (z) − 2πβT kφkm

j
k	̂T (z),

	0
0j (z) =

(
1 − mk

k

)
Sjj (z) − m

j
k

[
Skk (z) + Rkk (z) + Rk (z) + zS′

kk (z)
]

−m
j
kβT kφkD̄k3 (z) −

(
βTjφjm

j
k − εjk

) [
zD̄′

k1 (z) − qk

λk

]

−
(

2βT kφkm
j
kpj − βTjφj

)
Dj1 (z) −

(
2βT kφkm

j
kpk − εjk

)
D̄k1 (z)

+ 2πβT kφkm
j
k	̂T (z) , m

j
k = 4E∗j

ekj

, pk = λk

λ1 + λ2
,

ekj = E∗k

(
1 + ν∗j

)+ E∗j (3 − ν∗k), (z ∈ Sk; k = 1, 2; j = 3 − k)

(4.21)

which, along with (4.19), (4.20), enable to specify the homogeneous solution σ 0
kj , u0

j .
It can be proved that the following loading conditions at infinity are needed to solve the problem:
(
κ1�1 − �̄1 − �̄′

1 + βT 1	
∞
T

)
G2 = (κ2�2 − �̄2 − �̄′

2 + βT 2	
∞
T

)
G1,

�k = 1

4
(p + pk), �′

k = 1

2
(p − pk) + iτ,

αT 2/λ2 = αT 1/λ1; when q∞
xk = 0 (k = 1, 2) and αT 2 = αT 1 when q∞

y = 0.
Substitution of (4.17)–(4.21) in the IC (3.15) (without taking into account terms of order h2) leads to SSIE:
{

ρk1H2 (x) + ρk2H4 (x) + ρk3s2n (x) + ρk4s4n (x) + ρk5f1 (x) + ρk6f3 (x) = Fk (x),

ρj1H1 (x) + ρj2H3 (x) + ρj3s1n (x) + ρj4s3n (x) + ρj5f2 (x) + ρj6f4 (x) = Fj (x),
(4.22)

(
x ∈ L′

n; n = 1, N; k = 1, 2; j = 3, 4
)
,

where the functions Fm (x) (m = 1, 2, 3, 4) are given in Appendix A and the coefficients are equal to:

ρ11 = 2m−
12h/E∗B, ρ12 = −2l+1 h/E∗B, ρ13 = −ν∗B/E∗B, ρ14 = 1,

ρ15 = (m+
12 − m+

21

)
h/E∗B, ρ16 = 2l−1 h/E∗B, ρ21 = −2h

(
ν∗Bm−

12/E∗B + l+2
)
,

ρ22 = 2h
(
ν∗Bl+1 /E∗B − m−

12

)
, ρ24 = 0, ρ25 = −h

((
m+

12 − m+
21

)
ν∗B/E∗B + 2l−2

)
,

ρ26 = (m+
12 − m+

21 − 2ν∗Bl−1 /E∗B
)
h, ρ23 = −1/E∗B, ρ31 = 2ν∗Bm−

12h/E∗B,

ρ32 = 2ν∗Bl+1 h/E∗B, ρ33 = 1/ (ν∗BE∗B) , ρ35 = −ν∗B
(
m+

12 − m+
21

)
h/E∗B,

ρ36 = 2ν∗Bl−1 h/E∗B, ρ34 = −1, ρ41 = −2m−
12h, ρ42 = 2l+2 h, ρ44 = −1,

ρ43 = −2(1 + ν∗B)/E∗B, ρ45 = −2l−2 h, ρ46 = − (m+
12 − m+

21

)
h,

m±
kj = E∗k

2

(
1 + ν∗j

ekj

± 3 − ν∗j

ejk

)
, l±1 = E∗1E∗2

2

(
1

e12
± 1

e21

)
,

l±2 = (3 − ν∗1)(1 + ν∗2)

e12
± (3 − ν∗2)(1 + ν∗1)

e21
(k = 1, 2; j = 3 − k)

Additional conditions, (3.16)–(3.19), must be thus satisfied.
An investigation [10] of the characteristic part of SSIE (4.22) proves that JFf ∗

n , n = {1, 3} can be given as

f ∗
n (x) = (a+

m − x)−1/2±iµn(x − a−
m)−1/2∓iµnϕ∗

n(x), where ϕ∗
n(x) =∑∞

k=0 An
kP

−1/2±iµn,−1/2∓iµn

k (x) are dimen-
sionless regular functions, and µ1 = 1

2π
log κ1e21

κ2e12
, µ3 = 1

2π
log e21

e12
.

Introduction of a system of polar co-ordinates (r, θ) with the origin near the right or the left tip of the inclusion
z = ±r · exp(iθ) ± a±

m (Fig. 1), makes it possible to obtain two-term asymptotic expressions for the distribution
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of the stresses and displacements in the vicinity of the tips
(|z1| << 2a, 2a = a+

m − a−
m

)
[26] with (4.19)–(4.21)

taken into account:

‖σyyk, σxxk, σxyk, σrrk, σθθk, σrθk‖T = 1

2
√

2πr

2∑

m=1

(
L±

1km(θ, µm) · K±
1,m

+L±
2km(θ, µm) · K±

2,m

)
+ Nk

(±a±
m

)+ O
(
r2/3
)
, z ∈ Sk, (4.23)

where L±
1km, L±

2km; Nk

(±a±
m

)
are coefficients defined in [26]; K±

1,m, K±
2,m (m = 1, 2) denote the generalized

stress-intensity factors (GSIF), which are defined by the correlations

K±
1,m − iK±

2,m = lim
r→0 (θ=0)

√
2πr · exp (iεn)

(
σyy − iσxy

)
.

εn = µn log
r

2a
(m = 1, 2; n = −2m + 5).

The following special cases of SSIE (4.22) are important for analysis:

4.2.1 Perfectly rigid inclusion

For EB → ∞, αT k = 0:

f ∗
3 (x) = −

[
u0

x

′
(x) + iu0

y

′
(x)
]

h
≈ 0, H ∗

1 (x) − iβ1f
∗
1 (x) = F ∗

1 (x), (4.24)

F ∗
1 (x) ≡ i

2l+2

〈
u0

x

′
(x) + iu0

y

′
(x)
〉

h
− εB

l+2
− i

m+
21 − m+

12

l+2

[
u0

x

′
(x) + iu0

y

′
(x)
]

h

+ im−
21

πl+2

∫

L′

[
u0

x

′
(ξ) + iu0

y

′
(ξ)
]

h

dξ

ξ − x
, β1 = l−2

l+2

(
x ∈ L′).

4.2.2 Cracks

When EB → ∞, one may derive from (4.22):

f ∗
1 (x) = −

[
σ 0

yy (x) − iσ 0
xy (x)
]

h
≈ 0, H ∗

3 (x) − iβ3f
∗
3 (x) = F ∗

3 (x), (4.25)

F ∗
3 (x) ≡ i

2l+1

〈
σ 0′

yy (x) − iσ 0′
xy (x)
〉

h
+ i

m+
21 − m+

12

l+1

[
σ 0

yy (x) − iσ 0
xy (x)
]

h

+ m−
21

πl+1

∫

L′

[
σ 0

yy (ξ) − iσ 0
xy (ξ)
]

h

dξ

ξ − x
, β3 = l−1

l+1

(
x ∈ L′).

4.2.3 Piecewise-homogeneous matrix without inclusion

If h → 0, then fr (x) = 0 (r = 1, 2, 3, 4) and the disturbed solution is zero.

4.2.4 Homogeneous matrix

If E1 = E2 = E, ν1 = ν2 = ν, αT 1 = αT 2 = αT , then ρm5 = ρm6 = 0 and SSIE (4.22) is simplified, separating
into two independent systems of two equations each:

ρk1H2 (x) + ρk2H4 (x) + ρk3s2n (x) ρk4s4n (x) = Fk (x),

ρj1H1 (x) + ρj2H3 (x) + ρj3s1n (x) ρj4s3n (x) = Fj (x),
(
x ∈ L′

n; n = 1, N; k = 1, 2; j = 3, 4
)
.

(4.26)

Then µm = 0 (m = 1, 3): the solutions for a crack or perfectly rigid strip belong to the class of functions∏−1/2,−1/2 (
f ∗

m

)
and that is why they are mechanically correct.
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4.2.5 Homogeneous medium without inclusion

This case can be obtained from (4.26), either by considering h → 0 or E → EB, ν → νB, αT → αT B, λ → λB.

4.3 Thermoelasticity problem in the case of a generalized plane temperature field

From a geometrical point of view the problem for a piecewise-homogeneous plate in the case of a generalized plane
temperature field is identical to the problem for a medium with a plane temperature field, when its lateral surfaces
are heat-insulated. The plate is under the same external loading, except for a heat flux at infinity, for which the
heat-transfer result has no physical meaning. The solution of this problem is reduced to the solution of the previous
problem for a plane temperature field.

The influence of heat transfer from the lateral surfaces of a plate demands taking into account the thickness 2δ of
the plate and the inclusions, their heat-transfer coefficients αk , αBn, the ambient temperature TC and the assumption
about the symmetry of the action of all temperature factors to a median surface of the plate.

The stresses and displacements in each of the parts Sk (k = 1, 2) must satisfy all constitutive relations (3.2),
(3.3) and the equation of displacement compatibility. The Airy function �k (x, y) [23, Chap. 2, Sect. 2] satisfies the
compatibility equation (3.4):



�k (x, y) + αT kEk
T (x, y) = 0 (k = 1, 2). (4.27)

In the previous case for a plane temperature field, the function T (x, y) was harmonic and therefore �k (x, y) was
biharmonic. This enabled the application of complex-function theory. In this case T satisfies the Helmholz equation
of heat conduction (3.6). That is why we write �k (x, y) as the sum of its biharmonic constituent �b

k (x, y) and the
partial solution of the heterogeneous equation (4.27) reads: �k (x, y) = �b

k (x, y) + �T
k (x, y).

Assuming the function �T
k (x, y) to be known, let us define

σb
xxk (x, y) = σxxk (x, y) − ∂2�T

k (x, y)

∂y2 , σ b
yyk (x, y) = σyyk (x, y) − ∂2�T

k (x, y)

∂x2 ,

σ b
xyk (x, y) = σxyk (x, y) + ∂2�T

k (x, y)

∂x∂y
((x, y) ∼ z ∈ Sk; k = 1, 2).

(4.28)

Thus, taking into account (3.3), we have

∂ub
xk (x, y)

∂x
= ∂uxk (x, y)

∂x
− αT kλkδ

αk

(
∂2�T

k (x, y)

∂y2 − νk

∂2�T
k (x, y)

∂x2

)

− αT kT ,

∂ub
yk (x, y)

∂y
= ∂uyk (x, y)

∂y
− αT kλkδ

αk

(
∂2�T

k (x, y)

∂x2 − νk

∂2�T
k (x, y)

∂y2

)

− αT kT , (4.29)

∂ub
xk (x, y)

∂y
+ ∂ub

yk (x, y)

∂x
= ∂uxk (x, y)

∂y
+ ∂uyk (x, y)

∂x
+ 2 (1 + νk) αT kλkδ

αk

∂2�T
k (x, y)

∂x∂y
.

Note that the expressions for σb
xxk, σ b

yyk, σ b
xyk, ub

xk, ub
yk satisfy (3.2), (3.3) and the compatibility equation

regarding the displacements in the regions Sk (k = 1, 2). That is why, from a mathematical point of view, the
determination of the “biharmonic” stresses and displacements, as introduced by (4.28), (4.29), is equivalent to the
thermoelasticity problem for the case of a plane temperature field.

One may derive the partial solution �T
k (x, y) by integrating (4.27) using (3.6) [27]:

�T
k (x, y) = −αT kEkλkδ

αk

[T (x, y) − Tc] + αT kEk

2αk

Wk (x, y), (4.30)

where, in the case of sources and doublets of heat action in the point z∗k , we have

Wk (x, y) = − qk

2π
log r∗k + qkk

2π

(x − x∗k) cosθk + (y − y∗k) sin θk

r2∗k

, r2∗k =
√

(x − x∗k)
2 + (y − y∗k)

2 .
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Thus, having the partial solution (4.30), by substitution of (4.28), (4.29) the “biharmonic” stresses and displace-
ments are defined. Determination of these values is fully similar to the solution of a thermoelastic problem for a
plane temperature field.

To illustrate this method, let us analyze the case of a homogeneous plate with an inclusion. Considering E1 =
E2 = E, ν1 = ν2 = ν, αT 1 = αT 2 = αT , λ1 = λ2 = λ, α1 = α2 = α and taking into account that, from a
heat-conduction point of view, the inclusion can be represented by a line of distributed heat sources and doublets,
one obtains an expression for �T

k (x, y), using (4.28):

�T
k (x, y) = −αT E

ω2

{
1

4πλδ

2∑

k=1

qk

[
K0 (ωr∗k) + log r∗k

]+ 1

4πλδ

2∑

k=1

qkk [(x − x∗k) cosθk

+ (y − y∗k) sin θk]

[
ωK1 (ωr∗k)

r∗k

− 1

r2∗k

]

− y

2π

∫

L′
f̃5 (ξ)

[
ωK1 (ωr)

r
− 1

r2

]
dξ

+ 1

2πλ

∫

L′
f̃6 (ξ)
[
K0 (ωr) + log r

]
dξ, r =

√
(x − ξ)2 + y2.

This function fully takes into account the temperature influence on the field of stresses and displacements.
Using this we obtain

σb0
yyk (z) − iσb0

xyk (z) = 	0
k (z) − 	0

k (z̄) + (z − z̄) 	0′
k (z),

2G
[
ûb0′

xk (z) + iûb0′
yk (z)
]

= κ	0
k (z) + 	0

k (z̄) − (z − z̄) 	0′
k (z),

σ̂ b
yyk (z) − iσ̂ b

xyk (z) = 	̂k (z) − 	̂k (z̄) + (z − z̄) 	̂′
k (z),

2G
[
ûb′

xk (z) + iûb′
yk (z)
]

= κ	̂k (z) + 	̂k (z̄) − (z − z̄) 	̂′
k (z) (z ∈ Sk),

(4.31)

where

	0
k (z) = �k + S11 (z) + S22 (z),

	0
j (z) = −�̄j − �̄′

j − Sjj (z) − Rjj (z) − Rj (z) − zS′
11 (z),

	̂k (z) = i

2 (1 + κ)

[
H ∗

1 (z) + 2GH ∗
3 (z)
]
,

	̂j (z) = i

2 (1 + κ)

[
κH ∗

1 (z) + 2GH ∗
3 (z)
]
.

(4.32)

Then by using Sokhotski–Plemelj formulas [23, Chap. 6], we obtain
〈
σ̂ b

yy − iσ̂ b
xy

〉

L
= −4i

1 − κ

1 + κ
H ∗

1 (x) − 16i
G

1 + κ
H ∗

3 (x) ,

[
σ̂ b

yy − iσ̂ b
xy

]

L
= f ∗

1 (x) ,

[
∂ûb

x

∂x
+ i

∂ûb
y

∂x

]

L

= f ∗
3 (x),

〈
∂ûb

x

∂x
+ ∂ûb

y

∂x

〉

L

= −4i
κ

G (1 + κ)
H ∗

1 (x) + 4i
1 − κ

1 + κ
H ∗

3 (x).

(4.33)

Passing in (4.31)–(4.33) to real stresses and displacements, using (4.28), (4.29), we obtain the SSIE:

ρk1H2 (x) + ρk2H4 (x) + ρk3s2n (x) + ρk4s4n (x) = FT
k (x),

ρj1H1 (x) + ρj2H3 (x) + ρj3s1n (x) + ρj4s3n (x) = FT
j (x),

(
x ∈ L′

n; n = 1, N; k = 1, 2; j = 3, 4
)
,

which differs from (4.26) only by the parts on the right. The additional terms (3.18), (3.19), having a similar physical
meaning, must then be calculated.

Thus, the solution of the thermoelastic problem for a piecewise-homogeneous plate with heat transfer from the
lateral surfaces is easily found from the known solution for a piecewise-homogeneous medium having a plane
temperature field.
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The methodology based on the inclusion model (3.10), (3.11), interaction conditions (3.15)–(3.19) and gov-
erned SSIE (4.11), (4.22) could be used to solve such problems as: the interaction between a number of interface
inclusions; the interaction of macro- and micro-defects [4,28]; periodical arrays of inclusions [8]; the effect of
combined thermal and mechanical loads [29,30] etc. As the PCCDD gives the external asymptotic solution, the
only limitation of the proposed methodology is that the solution is exact in the entire solid, except in the vicinity of
the heterogeneity (singularity). To analyze the CPMF at the tips of the defects, asymptotic methods are provided
[31].

A detailed analysis of these problems will be done by the authors in later publications. Now we concentrate only
on investigations of the thermoelastic state of a medium or a plate with heat-insulated lateral surfaces and a thin
elastic heat-active interface inclusion.

5 Examples

The method described above has been used to study a piecewise-homogeneous matrix with a thin defect placed
along L′ = [−a, a] for two cases of temperature loading: (1) by heat sources of intensity qk = ±q in the points
z∗k = ±id; k = (1, 2); (2) by heat doublets of intensity qkk and identical orientation θk = π/2 in these points.
Using (4.24), (4.25), we may obtain closed-form solutions for an interface defect.

An absolutely pliable heat-insulated inclusion (crack) for the case αT ∗2/λ2 = αT ∗1/λ1 gives the following GSIF:

K±
1,1 − iK±

2,1 = ± i
qE∗1E∗2αT ∗2

√
a/π

λ2

{
1

e21
J±

22 (d/a, µ3) + 1

e12
J±

21 (d/a, µ3)

}

∓ l+1√
πa

(
A3

1 + iA4
1

)
, µ3 = 1

2π
log

e21

e12
, (loading 1); (5.1)

K±
1,1 − iK±

2,1 = ∓ i
(q22E∗2 + q11E∗1) αT ∗2

16
√

πaλ2
J±

61 (d/a, µ3)

− (i ± 2µ3) αT ∗2

8
√

πaλ2

{
q22E∗2J

±
62 (d/a, µ3) − q11E∗1J

±
63 (d/a, µ3)

}

∓ i
2l+1 αT ∗2 (λ1q22 + λ2q11)√

πaλ2 (λ1 + λ2)
J64 (d/a) ∓ i

l+1√
πa

(
A3

1 + iA4
1

)
, (loading 2). (5.2)

If the half-planes the material properties are identical, and (5.1) becomes the simpler:

K±
1,1 − iK±

2,1 = ∓ i
qE∗αT ∗a

√
a

2λ
√

π
√

d2 + a2
∓ E∗

4
√

πa

(
A3

1 + iA4
1

)
(loading 1) (5.3)

which differs from a similar expression in [32, Chap. 9, Sect. 1] only by the last term.
An absolutely pliable diathermic inclusion for the case αT ∗2 = αT ∗1 yields:

K±
1,1 − iK±

2,1 = ± iqE∗1E∗2αT ∗
√

a/π

{
1

λ1e12
J±

23 (d/a, µ3) + 1

λ2e21
J±

24 (d/a, µ3)

}

∓ il+1√
πa

(
A3

1 + iA4
1

)
, µ3 = 1

2π
log

e21

e12
, (loading 1); (5.4)

K±
1,1 − iK±

2,1 = ∓i
αT ∗2

16
√

πa

(
q22E∗2

q2
+ q11E∗1

q1

)
J±

61 (d/a, µ3) − (i ± 2µ4) αT ∗2

8
√

πa

×
{

q22E2∗
λ2

J±
62 (d/a, µ3) − q11E1∗

λ1
J±

63 (d/a, µ3)

}
∓ i

l+1√
πa

(
A3

1 + iA4
1

)
, (loading 2). (5.5)
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For a perfectly rigid heat-insulated strip in the case αT ∗2G2/ (λ2κ2) = αT ∗1G1/ (λ1κ1) we have:

K±
1,2 − iK±

2,2 = ∓i
2q

√
a/πm−

21αT ∗2E∗2

l+2 λ2 (3 − ν∗2)

{
(3 − ν∗1) (1 + ν∗2)

e12
J±

21 (d/a, µ1) + (3 − ν∗2) (1 + ν∗1)

e21

× J±
22 (d/a, µ1)

}∓ i
m

_
21√
πa

(
A1

1 − iA2
1

)
, µ1 = 1

2π
log

κ1e21

κ2e12
, (loading 1); (5.6)

K±
1,2 − iK±

2,2 = ±i
m−

21

2
√

πal+2

{
d1J

±
65 (d/a, µ1) + d2J

±
66 (d/a, µ1)

}

+ (i ± 2µ1)m−
kj

8
√

πal+2

{
αT ∗1 (1 + ν1∗) q11

λ1
J±

63 (d/a, µ1) − αT ∗2 (1 + ν2∗) q22

λ2
J±

62 (d/a, µ1)

}

±i
(1 + ν1∗) (1 + ν2∗)m−

21l
+
3√

πal+2

(
q11

λ1
+ q22

λ2

)
J64 (d/a) ∓ i

m−
21√
πa

(
A1

1 − iA2
1

)
, (loading 2). (5.7)

A perfectly rigid diathermic strip in the case αT ∗2G2/κ2 = αT ∗1G1/κ1 gives:

K±
1,2 − iK±

2,2 = ∓i
2q

√
a/πm−

21αT ∗2E∗2

l+2 (3 − ν∗2)

{
(3 − ν∗1) (1 + ν∗2)

λ1e12
J±

23 (d/a, µ1)

+ (3 − ν∗2) (1 + ν∗1)

λ1e21
J±

24 (d/a, µ1)

}
∓ i

m−
21√
πa

(
A1

1 − iA2
1

)
, (loading 1); (5.8)

K±
1,2 − iK±

2,2 = ±i
m−

21

2
√

πal+2

{
d1J

±
65 (d/a, µ1) + d2J

±
66 (d/a, µ1) + (i ± 2µ1) m−

kj

8
√

πal+2

×
{

αT ∗1 (1 + ν∗1) q11

λ1
J±

63 (d/a, µ1)− αT ∗2 (1 + ν∗2) q22

λ2
J±

62 (d/a, µ1)

}
i
m−

21√
πa

(
A1

1 − iA2
1

)
,

(loading 2). (5.9)

The notations used in (5.1)–(5.9) are given in Appendix B.
The dimensionless GSIF K0

m,j (m, j = 1, 2) are given in Figs. 2–5 for some values of the dimensionless para-
meters K = E∗2/E∗1, y∗/a when ν∗1 = ν∗2 = 0, 3 for loading 1 (by heat sources).

The calculations show that GSIF K2,m (m = 1, 2), generated by a loading in the direction normal to the axis of
the inclusion line, are of maximum value when the materials of the half-planes are mechanically identical; GSIF
K1,m (m = 1, 2) caused by a shear on an inclusion surface achieve extreme values when the mechanical properties
of the matrix materials differ approximately by a factor of ten.

It also turned out, that the use of doublets as the loading factors (at least in the limiting cases studied here) does
not change a high-quality figure substantially in comparison with loading by heat sources. The difference is that
the doublet influences the CPMF of the matrix closer to the inclusion than for a heat source.

5.1 Numerical analysis for a homogeneous matrix

Changes in GSIF in the case of an elastic inclusion of thickness h/a = 0.001 in a homogeneous matrix have been
investigated numerically by the Lobatto–Chebyshev collocation technique [33] by use of Richardson extrapolation.
The calculations were carried out when ν = νB, αT B/αT = 0 for two ways of temperature loading: (1) by heat
sources of intensity qk = ±q in the points z∗k = ±iy∗, k = (1, 2); (2) by heat sources of the same intensity in the
points z∗k = ±x∗, k = (1, 2) for a wide variety of the relative stiffness k = EB/E and relative heat conductivity of
the inclusion, � = λB/λ (10−5 ≤ k, � ≤ 105). To achieve a precision of order 1%, it was sufficient to retain 40
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Fig. 2 The dimensionless generalized stress-intensity factors for
a heat insulated crack
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Fig. 3 The dimensionless generalized stress-intensity factors
for a diathermic crack

terms in the decompositions of the unknown JF concerning the Chebyshev series with a distinguished square-root
singularity.

Estimated values of the dimensionless GSIF K0
j,m = Kj,mλ/

(
qαT ∗E∗

√
a
)
(j,m = 1, 2), depending on the

dimensionless parameters k,�, y∗/a, x∗/a, are shown in Fig. 6.
Extreme values of GSIF are noticeable for the cases of a heat-insulated crack and an absolutely rigid diather-

mic inclusion. An increase of the relative heat-conduction coefficient � leads to a decrease of GSIF following an
absolute value. The last effect generates also the relative removal of sources from the inclusion (Fig. 6). However,
it should be noted that certain distant sources of the inclusion exist, when the absolute value of GSIF reaches its
maximum.

It is also clear that the GSIF values, as obtained for k = 10−5, � = 10−5, for k = 10−5, � = 105, for k = 105,
� = 10−5 and for k = 105, � = 105, differ from those obtained for an absolutely pliable heat-insulated, absolutely
pliable diathermic, absolutely rigid heat-insulated and absolutely rigid diathermic inclusion, differing no more than
1%, which is within the limits of numerical precision. To achieve this precision, one must have h/a ≤ 0.001.
It is clear that the thinner the inclusion is, the more precise the result will be, as obtained on the basis of the
jump-functions concept.
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Fig. 4 The dimensionless generalized stress-intensity factors for
a diathermic absolutely rigid inclusion
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Fig. 5 The dimensionless generalized stress-intensity factors
for a heat-insulated absolutely rigid inclusion

6 Conclusions

An effective method to model the presence of thin inclusions of arbitrary physical nature in bodies has been given.
Using this method, we have reduced the plane thermoelastic problem for two bounded dissimilar half-planes with
thin heat-active interface inclusions to two separate systems of singular integral equations, namely for a heat-con-
duction problem and for a thermoelasticity problem with a known temperature field. All possible limiting cases
regarding the physical and elastic parameters have been obtained. For general properties of the inclusion material
the system has been solved by a collocation method. The concept of generalized stress-intensity factors has been
introduced and their dependence on the material properties and several ways of thermal loading have been analyzed.
Most significant is the fact that the extreme values of generalized stress-intensity factors are obtained when the
physical and elastic parameters of the inclusion are extreme. The generalized stress-intensity factors, generated
by loadings normal to the axial line of the inclusion, are maximal in size when the matrix materials are identical
mechanically, and generalized stress-intensity factors, caused by a shear on an inclusion surface lead to extreme
values when the mechanical properties of the matrix materials differ approximately by a factor of ten.
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Fig. 6 Dimensionless
generalized stress-intensity
factors for a wide range of k

and � in a homogeneous
matrix

.

.

.

.

.

.

.

The method to reduce the solution of the thermoelastic problem for a piecewise-homogeneous plate with heat
transfer from the lateral surfaces to the known solution for a piecewise-homogeneous medium having a plane
temperature was discussed.

The only limitation of the proposed methodology is that the solution is valid everywhere, except in the vicinity
of the tips of the heterogeneity (singularity), because the PCCDD gives the external asymptotic solution. To analyze
the CPMF in the tips of the defects, asymptotic methods are provided.

The methodology based on the inclusion model (3.10), (3.11), interaction conditions (3.15)–(3.19) and governing
SSIE (4.11), (4.22) can be useful for solving a number of similar problems. Examples are: the interaction between
some of the interface inclusions; the interaction between macro- and microdefects; periodic arrays of inclusions;
the effect of combined thermal and mechanical loads etc.

The authors believes that the discussed technique for modeling a thin inclusion together with a jump-function
method can be an effective tool for analyzing plane piezoelectric problems for solids with thin inclusions.

Appendix A: The right parts of the thermomechanical interaction conditions of a thin elastic heat-active
inclusion layer with matrix (3.15)

F1 (x) = νB

EB
Nx

(
a−
p

)
− V
(
a−
p

)
+ νB

EB

∫ x

a−
p

[
σ 0

xy

]

h
dξ −
∫ x

a−
p

[
u0′

y

]

h
dξ − h

EB

〈
σ 0

yy

〉

h

+ h2

EB

∂

∂x

[
σ 0

xy

]

h
− αT Bh

{
〈T 〉h +

[
λ

αy

∂T

∂y

]

h

}
− αT B

λB
h2
[
λ

∂T

∂y

]

h

,

123



336 G. T. Sulim, J. Z. Piskozub

F2 (x) = 1

EB
Nx

(
a−
p

)
+ 1

EB

∫ x

a−
p

[
σ 0

xy

]

h
dξ − h

〈
u0′

x

〉

h
− νB

EB
h
〈
σ 0

yy

〉

h
+ h2 ∂

∂x

[
u0

y ′
]

h

− 2 − νB

EB
h2 ∂

∂x

[
σ 0

xy

]

h
+ αT Bh

{
〈T 〉h +

[
λ

αy

∂T

∂y

]

h

}
+ αT B

λB
h2
[
λ

∂T

∂y

]

h

,

F3 (x) = − νB

EB
Nxy

(
a−
p

)
+
∫ x

a−
p

{[
u0′

x

]

h
− 1

νBEB

[
σ 0

yy

]

h

}
dξ − h2

EB

∂

∂x

[
σ 0

yy

]

h

+ νB

EB
h
〈
σ 0

xy

〉

h
− 1 + νB

νB
αT B

∫ x

a−
p

{
[T ]h +

〈
λ

αy

∂T

∂y

〉

h

}
dξ − αT Bh2 ∂

∂x

{
[T ]h +

〈
λ

αy

∂T

∂y

〉

h

}
,

F4 (x) = V ′ (a−
p

)
+
∫ x

a−
p

[
u0′

x

]

h
dξ + 1

GB

∫ x

a−
p

[
σ 0

yy

]

h
dξ − h

〈
u0′

y

〉

h
− 2hεB

F5 (x) = λB

h

(
1 − h2

2

∂2

∂x2

){[
t0
]

h
+
〈

λ

αy

∂t0

∂y

〉

h

}
−
〈
λ

∂t0

∂y

〉

h

− h

2δ
[QB]h ,

F6 (x) = Qx

(
a−
p

)
− λBh

∂

∂x

{〈
t0
〉

h
+
[

λ

αy

∂t0

∂y

]

h

}
− h2 ∂

∂x

[
λ

∂t0

∂y

]

h

+
∫ x

a−
p

[
λ

∂t0

∂y

]

h

dξ

−2h

∫ x

a−
p

QC
B (ξ) dξ

(
x ∈ L′

p

)
.

Appendix B: The notations used in (5.1)–(5.9)
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